试题
题目:
(2005·漳州)如图,美丽的勾股树中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13厘米,则A、B、C、D的面积之和为
169
169
平方厘米.
答案
169
解:根据勾股定理得到:C与D的面积的和是P的面积;A与B的面积的和是Q的面积;而P,Q的面积的和是M的面积.
即A、B、C、D的面积之和为M的面积.
∵M的面积是13
2
=169,
∴A、B、C、D的面积之和为169.
考点梳理
考点
分析
点评
专题
勾股定理.
根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积即169.
注意运用勾股定理和正方形的面积公式证明结论:四个小正方形的面积和等于最大正方形的面积.
压轴题.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )