试题
题目:
如图所示,在三角形ABC中,∠C=90゜,两直角边AC=6,BC=8,三角形内有-点P,它到各边的距离相等,则这个距离是( )
A.1
B.2
C.3
D.无法确定
答案
B
解:由勾股定理得:AB=
6
2
+
8
2
=10,
∵在△ABC内有一点P,点P到各边的距离都相等,
∴P为△ABC的内切圆的圆心,设切点为D、E、F,连接PD、PE、PF、PA、PC、PB,内切圆的半径为R,
则由三角形面积公式得:
1
2
×AC×BC=
1
2
×AC×R+
1
2
×BC×R+
1
2
×AB×R,
∴6×8=6R+8R+10R,
R=2,
故选B.
考点梳理
考点
分析
点评
角平分线的性质;勾股定理.
根据在△ABC内有一点P,点P到各边的距离都相等,得出P为△ABC的内切圆的圆心,设切点为D、E、F,连接PD、PE、PF、PA、PC、PB,内切圆的半径为R,由三角形面积公式得出
1
2
×AC×BC=
1
2
×AC×R+
1
2
×BC×R+
1
2
×AB×R,
代入求出即可.
本题考查了勾股定理,三角形的内切圆,三角形的面积的应用,关键是得出关于R的方程.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )