试题
题目:
已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=40°,求∠DCB的度数;
(2)若AB=10,CD=6,求BD的长.
答案
解:(1)∵AB=AC,∠A=40°,
∴∠B=70°.
∵CD⊥AB,
∴∠CDB=90°,
∴∠DCB=20°;
(2)在Rt△ACD中,∵AC=AB=10,CD=6,
∴AD=
A
C
2
-C
D
2
=8,
∴BD=AB-AD=2.
解:(1)∵AB=AC,∠A=40°,
∴∠B=70°.
∵CD⊥AB,
∴∠CDB=90°,
∴∠DCB=20°;
(2)在Rt△ACD中,∵AC=AB=10,CD=6,
∴AD=
A
C
2
-C
D
2
=8,
∴BD=AB-AD=2.
考点梳理
考点
分析
点评
勾股定理;等腰三角形的性质.
(1)根据三角形内角和定理和等腰三角形的性质求得∠B=70°;然后在直角△BCD中,由“直角三角形的两个锐角互余”的性质求得∠DCB的度数;
(2)在Rt△ACD中根据勾股定理得到AD=
A
C
2
-C
D
2
=8,则易求BD=AB-AD=2.
本题考查了勾股定理、等腰三角形的性质.注意,勾股定理应用于直角三角形中.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )