试题
题目:
如图,△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB,E为垂足,交BC于点D,BD=
16
2
,则AC的长为( )
A.
8
3
B.8
C.16
D.
12
3
答案
C
解:∵DE垂直平分AB,
∴AD=BD=16
2
,∠B=∠BAD=22.5°,
∴∠ADC=∠B+∠BAD=45°,
在Rt△ACD中,
2AC
2
=AD
2
,AC=16.
故选C.
考点梳理
考点
分析
点评
勾股定理;线段垂直平分线的性质.
根据线段垂直平分线上任意一点,到线段两端点的距离相等可得:AD=BD=16
2
,∠B=∠BAD=22.5°,∠ADC=∠B+∠BAD=45°,在Rt△ACD中,由“勾股定理”可求出AC的长.
本题主要考查线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等)和勾股定理.
找相似题
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·枣庄)如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )
(2012·广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )