试题

题目:
已知关于x的方程
x
x-3
-2=
m
x-3
解为正数,求m的取值范围.
答案
解:去分母,得x-2(x-3)=m,
解得:x=6-m,
∵x>0,
∴6-m>0,
∴m<6,且x≠3,
∴m≠3.
∴m<6且m≠3.
解:去分母,得x-2(x-3)=m,
解得:x=6-m,
∵x>0,
∴6-m>0,
∴m<6,且x≠3,
∴m≠3.
∴m<6且m≠3.
考点梳理
分式方程的解.
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
解答本题时,易漏掉m≠3,这是因为忽略了x-3≠0这个隐含的条件而造成的,这应引起同学们的足够重视.
找相似题