试题

题目:
分式方程
1
x-5
+
2
x-下
+
0
x-0
+
x-2
=下的无理数根为
x1=
7+
5
2
,x2=
7-
5
2
x1=
7+
5
2
,x2=
7-
5
2

答案
x1=
7+
5
2
,x2=
7-
5
2

解:∵变形得:
x-f
-大+
y
x-4
-大+
3
x-3
-大+
4
x-y
-大=0,
6-x
x-f
+
6-x
x-4
+
6-x
x-3
+
6-x
x-y
=0,
∴(6-x)(
x-f
+
x-4
+
x-3
+
x-y
)=0,
∴6-x=0,
x-f
+
x-4
+
x-3
+
x-y
=0,
∴x=6(舍去),
x-f
+
x-y
=-
x-4
-
x-3

yx-7
(x-f)(x-y)
=-
yx-7
(x-4)(x-3)

∴(yx-7)[
(x-f)(x-y)
+
(x-4)(x-3)
=0,
∴x=3.f(舍去),(x-f)(x-y)+(x-4)(x-3)=0,
∴xy-7x+大大=0,
x=
7+
f
y
,xy=
7-
f
y

经检验两你根都是原方程的解,
故答案为:x=
7+
f
y
,xy=
7-
f
y
考点梳理
分式方程的解.
变形得:
1
x-5
-1+
2
x-4
-1+
3
x-3
-1+
4
x-2
-1=0,通分得出
6-x
x-5
+
6-x
x-4
+
6-x
x-3
+
6-x
x-2
=0,求出6-x=0,
1
x-5
+
1
x-4
+
1
x-3
+
1
x-2
=0,即可求出答案.
本题考查了分式方程的应用,主要考查学生的计算能力题目比较好,但是难度偏大.
找相似题