试题
题目:
如图,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=
40°
40°
.
答案
40°
解:∵∠BAE:∠BAC=1:5,
∴设∠BAE=x°,则∠BAC=5x°,∠EAC=4x°,
∵DE是AC的垂直平分线,
∴AE=EC,
∴∠C=∠EAC=4x°,
∵在Rt△ABC中,∠BAC+∠C=90°,
∴5x+4x=90,
解得:x=10.
则∠C=40°.
故答案是:40°.
考点梳理
考点
分析
点评
线段垂直平分线的性质.
根据DE是AC的垂直平分线则AE=EC,根据等腰三角形等边对等角,以及直角三角形的两个锐角互余即可得到方程求得.
本题考查线段的垂直平分线以及等腰三角形的性质,正确列出方程是关键.
找相似题
(2013·临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
如图,△ABC中,∠C=90゜,AB的垂直平分线交BC于D,交AB于E,∠DAC=20゜,∠B=
35゜
35゜
.
在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,则AC和CD的关系是
AC=3CD
AC=3CD
.
如图,D为BC边上一点,且BC=BD+AD,则AD
=
=
DC,点D在
AC
AC
的垂直平分线上.
如图,MN是AB的中垂线,点P在MN上,则PA=
PB
PB
.