试题
题目:
(2013·临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.AB=AD
B.AC平分∠BCD
C.AB=BD
D.△BEC≌△DEC
答案
C
解:∵AC垂直平分BD,
∴AB=AD,BC=CD,
∴AC平分∠BCD,EB=DE,
∴∠BCE=∠DCE,
在Rt△BCE和Rt△DCE中,
BE=ED
BC=CD
,
∴Rt△BCE≌Rt△DCE(HL),
故选:C.
考点梳理
考点
分析
点评
线段垂直平分线的性质.
根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.
此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.
找相似题
如图,△ABC中,∠C=90゜,AB的垂直平分线交BC于D,交AB于E,∠DAC=20゜,∠B=
35゜
35゜
.
在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,则AC和CD的关系是
AC=3CD
AC=3CD
.
如图,D为BC边上一点,且BC=BD+AD,则AD
=
=
DC,点D在
AC
AC
的垂直平分线上.
如图,MN是AB的中垂线,点P在MN上,则PA=
PB
PB
.
如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若∠A=50°,AB+BC=6,则△BCF的周长=
6
6
,∠EFC=
40
40
度.