数学
在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.
操作示例
小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD的位置,拼成新的图形(如图2).
(Ⅰ)思考与实践:
(1)操作后小明发现,拼成的新图形是矩形,请帮他说明理由;
(2)类比图2的剪拼方法,请你在图3画出剪拼成一个平行四边形的示意图.
(Ⅱ)发现与运用:
小白发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
请你选择下面两题中的一题作答:(多做不加分,两题都做按第一题计分)
(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.
(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
如图,是一块圆形砂轮破碎后的部分残片,试找出它的圆心.
李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路a、b(如图),李明想把超市M建在到两居民区的距离相等、且到两条公路距离也相等的位置上,请在答题卷的原图上利用尺规作图作出超市M的位置.(要求:不写已知、求作、做法和结论,保留作图痕迹)
我们知道,含有36°的等腰三角形是特殊的三角形,通常把有一个内角等于36°的三角形称为“黄金三角形”.
(1)如图1、2,在△ABC中,已知:AB=AC,且∠A=36°.请你设计两种不同的分法,将黄金三角形ABC分割成三个等腰三角形(分别画在图1,图2上)
(2)如图3,在△ABC中,已知:AB=AC,且∠B=36°.请你设计一种分法,将黄金三角形ABC分割成三个等腰三角形.(画在图3上)
注:(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.)
用一条直线可将等腰梯形分成两部分,用这两部分能拼成一个新的图形.
请你在原等腰梯形上画出直线,并对这条直线进行必要的说明,然后在框内画出要求的新图形
(1)将等腰梯形分割后拼成矩形
;
(2)将等腰梯形分割后拼成平行四边形(非矩形)
;
(3)将等腰梯形分割后拼成三角形
.
如图,居民区A处有两条交义公路AM、AN,它们构成∠MAN.张三准备在∠MAN内部开一家超市B,李四准备在公路AM上开一家洗车场C.根据以下条件,请用尺规作图确定超市B及洗车场C的位置.(写出已知
、求作,作图不写作法,但要求保留作图痕迹.)
(1)超市B到两公路AM、AN距离分别相等,且到居民区A的距离为m(如图);
(2)洗车场C到居民区A及超市B的距离相等.
已知:
求作:
如图矩形纸片ABCD,把它沿对角线折叠,会得到怎么样的图形呢?
(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图轨迹,只需画出其中一种情况)
(2)折叠后重合部分是什么图形?试说明理由.
(3)请选取一对你喜欢的数值作为矩形的长和宽,求出重叠部分的面积.
用圆规、直尺作图,不写作法,但要保留作图痕迹.
为美化校园,学校准备在如图所示的三角形(△ABC)空地上修建一个面积最大的圆形花坛,请在图中画出这个圆形花坛.
我们知道:任意的三角形纸片可通过如图①所示的方法折叠得到一个矩形.
(1)实践:将图②中的正方形纸片通过适当的方法折叠成一个矩形(在图②中画图说明).
(2)探究:任意的四边形纸片是否都能通过适当的方法折叠成一个矩形?若能,直接在图③中画图说明;若不能,则四边形至少应具备什么条件才行?并画图说明.(要求:画图应体现折叠过程,用虚线表示折痕,用箭头表示折叠方向,折叠后图形中既无缝隙又无重叠部分)
在平面上有且只有四个点,这四个点有一个独特的性质:每两点之间的距离有且只有两种长度,例如正方形ABCD四个顶点A,B,C,D,有AB=BC=CD=DA,AC=BD,请画出具有这种独特性质的另外四种不同的图形,并标明相等的线段.
第一页
上一页
30
31
32
33
34
下一页
最后一页
184298
184299
184301
184303
184304
184306
184308
184310
184311
184313