数学
如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.
(1)如果P、Q分别从A、B同时出发,经过多长时间,使△PBQ的面积为8cm
2
?
(2)如果P、Q分别从A、B同时出发,当P、Q两点运动几秒时,PQ有最小值,并求这个最小值.
如图,在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,AD=1,AB=5,BC=4,点P是线段AB上一个动点,
点E是CD的中点,延长PE至F,使EF=PE.
(1)判定四边形PCFD的形状;
(2)当AP的长为何值时,四边形PCFD是矩形;
(3)求四边形PCFD的周长的最小值.
已知:如图,直线
y=-
3
4
x+3
交x轴于O
1
,交y轴于O
2
,⊙O
2
与x轴相切于O点,交直线O
1
O
2
于P点,以O
1
为圆心O
1
P为半径的圆交x轴于A、B两点,PB交⊙O
2
于点F,⊙O
1
的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O
2
的切线;
(3)EO
1
的延长线交⊙O
1
于C点,若G为BC上一动点,以O
1
G为直径作⊙O
3
交O
1
C于点M,交O
1
B于N.下列结论:①O
1
M·O
1
N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
如图,在△ABC中,AC=BC,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,
(1)如图1:若EA=CE,探索线段EF与EG的数量关系,并证明你的结论;
(2)如图2:若EA=2CE,探索线段EF与EG的数量关系,并证明你的结论;
(3)若EA=kCE,探索线段EF与EG的数量关系,请直接写出你的结论.
已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.
如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连接AB.点P从点B出发,以每秒4个单位长度的速度沿BC的方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于点D,作
DE⊥AC于点E.F为射线CB上一点,使得∠CEF=∠ABC.设点P运动的时间为x秒.
(1)用含有x的代数式表示CE的长.
(2)求点F与点B重合时x的值.
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式.
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角△CDE,连接AD,
(1)当点E运动过程中∠BCE与∠ACD的关系是
相等
相等
.
(2)AD与BC有什么位置关系?说明理由.
(3)四边形ABCD的面积是否有最大值?如果有,最大值是多少?如果没有,说明理由.
已知·ABCD中,AB=
3
,AD=2,∠D=45°,·EBGF是由·ABCD旋转所得,且边EF刚好过点C,连接AE,CG
(1)求
AE
CG
的值;
(2)求四边形AECD的面积.
如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B
2
D
1
C
1
的面积为S
1
,△B
3
D
2
C
2
的面积为S
2
,…,△B
n+1
D
n
C
n
的面积为S
n
,通过计算S
1
,S
2
,…,的值,归纳出S
n
的表达式(用含n的式子表示).
如图,以正方形ABCD的边AB为直径作⊙O,E是⊙O上的一点,EF⊥AB于F,AF>
BF,作直线DE交BC于点G.若正方形的边长为10,EF=4.
(1)分别求AF、BF的长.
(2)求证:DG是⊙O的切线.
第一页
上一页
143
144
145
146
147
下一页
最后一页
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132