数学
公司改革实行每月考核再奖励的新制度,大大调动了员工的积极性.2013年一名员工每月奖金的变化如下表:(正数表示比前一月多的钱数,负数表示比前一月少的钱数)单位:(元)
月份
一月
二月
三月
四月
五月
六月
七月
钱数变化
+300
+220
-150
-100
+330
+200
+280
(1)若2012年底12月份奖金为a元,用代数式表示2013年二月的奖金;
(2)请判断七个月以来这名员工得到奖金最多是哪个月?最少是哪个月?它们相差多少元?
(3)若2013年这七个月中这名员工最多得到的奖金是2800元,请问2012年12月份他得到多少奖金?
(1)已知x-4=-2,求代数式(x-2)
2
+4(x-2)-3x+5的值.
(2)有一种数学游戏,规则如下:任意的想一个数,把这个数乘以2,结果加上8,再除以2,最后减去所想的数,求此时的结果.请你自己想一个数后按这个规则试一试,并说明得到这个结果的理由.
已知:b是最小的正整数,且a、b满足(c-5)
2
+|a+b|=0.
(1)请求出a、b、c的值;
(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+3|;(写出化简过程)
(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
计算与化简
(1)
(-
1
2
)-(-3
1
4
)+(+2
3
4
)-(+5
1
2
)
(2)
-
2
2
+|5-8|+24÷(-3)×
1
3
(3)
-2
1
6
×5-2
1
6
×(-4)+
13
6
×(-8)
(4)
1-
1
2
×[3×
(-
2
3
)
2
-
(-1)
4
]+
1
4
÷(-
1
2
)
3
(5)
4
x
3
-[-
x
2
-2(
x
3
-
1
2
x
2
+1)]
(6)4ab-3b
2
-[(a
2
+b
2
)-(a
2
-b
2
)].
在正常情况下,某出租车司机每天驾车行驶t小时,且平均速度为v千米/小时.已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/小时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/小时,
(1)求A日出租车司机比正常情况少行驶多少千米?(用含v,t的代数式表示)
(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米?
由于看错2运算符号,某学生把一个整式减去-4a
2
+2b
2
+zc
2
误以为是加上-4a
2
+2b
2
+zc
2
,结果得出h答案是a
2
-4b
2
-2c
2
,求原题h正确答案.
计算:(1)
5.2+(-7.5)+9+(-11.2)+13
1
2
(2)2(3m
2
n-2mn
2
)-(4m
2
n-5mn
2
)
化简:
(1)6m-(3n-m)(2)2(3x-5)-(-x+4)
化简:
(六)-lx
2
y+2x
2
y+lxy
2
-2xy
2
;
(2)l(a
2
-2aq)-2(-laq+q
2
);
(l)5aqc-{2a
2
q-[laqc-(4a
2
q-aq
2
]}.
先化简再求值:已知:A=x
3
+6-5x,B=3x-3+x
2
,C=x
2
-6x.求:当x
2
=4时,A-2(B-C)的值.
第一页
上一页
144
145
146
147
148
下一页
最后一页
26848
26850
26852
26854
26856
26858
26860
26862
26864
26866