试题

题目:
若(图m+多bn+2)(图2n-多b2n)=图5b3,则求m+n的值.
答案
解:(am+1bn+2)(a2n-1b2n)=am+1×a2n-1×bn+2×b2n
=am+1+2n-1×bn+2+2n
=am+2nb1n+2=a5b1
∴m+2n=5,1n+2=1,解得:n=
1
1
,m=
11
1

m+n=
14
1

解:(am+1bn+2)(a2n-1b2n)=am+1×a2n-1×bn+2×b2n
=am+1+2n-1×bn+2+2n
=am+2nb1n+2=a5b1
∴m+2n=5,1n+2=1,解得:n=
1
1
,m=
11
1

m+n=
14
1
考点梳理
同底数幂的乘法.
首先合并同类项,根据同底数幂相乘,底数不变,指数相加的法则即可得出答案.
本题考查了同底数幂的乘法,难度不大,关键是掌握同底数幂相乘,底数不变,指数相加.
计算题.
找相似题