试题
题目:
已知:关于x的一次函数y=(2m-1)x+m-2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.
(1)求这个函数的解析式.
(2)求直线y=-x和(1)中函数的图象与x轴围成的三角形面积.
答案
解:(1)由题意得:
2m-1>0
m-2<0
,
解得:
1
2
<m<2,
又∵m为正整数,
∴m=1,函数解析式为:y=x-1.
(2)由(1)得,函数图象与x轴交点为(1,0)与y轴交点为(0,-1),
∴所围三角形的面积为:
1
2
×1×1=
1
2
.
解:(1)由题意得:
2m-1>0
m-2<0
,
解得:
1
2
<m<2,
又∵m为正整数,
∴m=1,函数解析式为:y=x-1.
(2)由(1)得,函数图象与x轴交点为(1,0)与y轴交点为(0,-1),
∴所围三角形的面积为:
1
2
×1×1=
1
2
.
考点梳理
考点
分析
点评
专题
待定系数法求一次函数解析式.
(1)根据函数图象与负半轴相交可得出m-2<0,再根据图象不经过第二象限可得出2m-1>0,从而结合m为正整数可得出m的值.
(2)求出与x轴和y轴的交点即可得出所围成的三角形的面积.
本题考查待定系数法求函数解析式及求解三角形面积的知识,难度不大,注意解答此类题目的步骤.
待定系数法.
找相似题
(2007·大连)如图,直线y=kx+b经过点A(0,3),B(-2,0),则k的值为( )
(2006·淄博)在平面直角坐标系中,已知A(
3
,1),O(0,0),C(
3
,0)三点,AE平分∠OAC,交OC于E,则直线AE对应的函数表达式是( )
(2002·烟台)如图所示,直线l的解析式是( )
(1999·内江)一次函数的图象过点(-
1
2
,2)和(3,-2),则此图象不经过( )
(1997·安徽)已知直线y=kx+b经过(-5,1)和点(3,-3),那么k和b的值依次是( )