试题
题目:
正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:
(1)k的值;
(2)两条直线与x轴围成的三角形的面积.
答案
解:(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),
∴把点P(1,m)代入得:
m=2 ①
m=-3+k ②
,
把①代入②得:k=5;
(2)根据题意,如图:
∵点P(1,2),
∴三角形的高就是2,
∵y=-3x+5,
∴A(0,
5
3
),
∴OA=
5
3
,
∴S
△AOP
=
1
2
×
5
3
×2=
5
3
解:(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),
∴把点P(1,m)代入得:
m=2 ①
m=-3+k ②
,
把①代入②得:k=5;
(2)根据题意,如图:
∵点P(1,2),
∴三角形的高就是2,
∵y=-3x+5,
∴A(0,
5
3
),
∴OA=
5
3
,
∴S
△AOP
=
1
2
×
5
3
×2=
5
3
考点梳理
考点
分析
点评
待定系数法求一次函数解析式;一次函数图象上点的坐标特征;三角形的面积.
(1)根据待定系数法将点P(1,m)代入函数中,即可求得k的值;
(2)先根据题意画出图形,再根据交点坐标即可求出三角形的面积.
此题考查了待定系数法求解析式;解题的关键是根据正比例函数和一次函数的图象性质进行计算即可;主要是画出图形.
找相似题
(2007·大连)如图,直线y=kx+b经过点A(0,3),B(-2,0),则k的值为( )
(2006·淄博)在平面直角坐标系中,已知A(
3
,1),O(0,0),C(
3
,0)三点,AE平分∠OAC,交OC于E,则直线AE对应的函数表达式是( )
(2002·烟台)如图所示,直线l的解析式是( )
(1999·内江)一次函数的图象过点(-
1
2
,2)和(3,-2),则此图象不经过( )
(1997·安徽)已知直线y=kx+b经过(-5,1)和点(3,-3),那么k和b的值依次是( )