试题

题目:
先化简,再求值.
(1)(3a3-2a2+a-1)-(4a3-2a2+3a+2),其中a=-1.
(2)3x2y-[2xy2-2(xy-
3
2
x2y)+xy]+3xy2
,其中x=3,y=-
1
3

答案
解:(1)(3a3-2a2+a-1)-(4a3-2a2+3a+2)
=3a3-2a2+a-1-4a3+2a2-3a-2
=-a3-2a-3;
当a=-1时,原式=-a3-2a-3=-(-1)3-2×(-1)-3=0;
(2)3x2y-[2xy2-2(xy-
3
2
x2y)+xy]+3xy2

=3x2y-[2xy2-2xy+3x2y+xy]+3xy2
=3x2y-2xy2+2xy-3x2y-xy+3xy2
=xy2+xy;
x=3,y=-
1
3
时,原式=xy2+xy=3×(-
1
3
)2+3×(-
1
3
)=
1
3
-1=-
2
3

解:(1)(3a3-2a2+a-1)-(4a3-2a2+3a+2)
=3a3-2a2+a-1-4a3+2a2-3a-2
=-a3-2a-3;
当a=-1时,原式=-a3-2a-3=-(-1)3-2×(-1)-3=0;
(2)3x2y-[2xy2-2(xy-
3
2
x2y)+xy]+3xy2

=3x2y-[2xy2-2xy+3x2y+xy]+3xy2
=3x2y-2xy2+2xy-3x2y-xy+3xy2
=xy2+xy;
x=3,y=-
1
3
时,原式=xy2+xy=3×(-
1
3
)2+3×(-
1
3
)=
1
3
-1=-
2
3
考点梳理
整式的加减—化简求值.
这两个小题都要先去括号再合并同类项,对原代数式进行化简,然后把a或x,y的值代入计算即可.
熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.
找相似题