试题

题目:
已知A=2x3y-y,B=x+3x3y,
(1)化简:3A-2B,
(2)若|x-
1
3
|+(y+
1
2
)2=0
,求代数式3A-2B的值.
答案
解:(1)把A=2x3y-y,B=x+3x3y代入3A-2B得:
3A-2B=3(2x3y-y)-2(x+3x3y)
=6x3y-3y-2x-6x3y
=-2x-3y;

(2)∵|x-
1
3
|+(y+
1
2
)
2
=0,
∴x-
1
3
=0,x=
1
3

y+
1
2
=0,y=-
1
2

∴3A-2B
=-2x-3y=-2×
1
3
-3×(-
1
2

=-
2
3
+
3
2

=
5
6

解:(1)把A=2x3y-y,B=x+3x3y代入3A-2B得:
3A-2B=3(2x3y-y)-2(x+3x3y)
=6x3y-3y-2x-6x3y
=-2x-3y;

(2)∵|x-
1
3
|+(y+
1
2
)
2
=0,
∴x-
1
3
=0,x=
1
3

y+
1
2
=0,y=-
1
2

∴3A-2B
=-2x-3y=-2×
1
3
-3×(-
1
2

=-
2
3
+
3
2

=
5
6
考点梳理
整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.
(1)把A=2x3y-y,B=x+3x3y代入3A-2B,然后去括号合并同类项即可;
(2)根据非负数的性质先求出x和y,然后代入(1)化简后的代数式即可求出代数式3A-2B的值.
此题考查的知识点是正式的加减-化简求值,关键是运用好法则和性质.
计算题.
找相似题