试题
题目:
问:在8×8的国际象棋盘上最多可以放多少个“+”字形(其中每个“+”字形占据棋盘的5个小方格),使得任意两个“+”字形不重叠,且每个“+”字形都不超出棋盘的边界?证明你的结论.
答案
解:8个.
证明:设“+”字形的中心为中间的那个方格,
显然所有的中心在6×6的方格内,而每个3×3的方格内最多放2个中心,
6×6的棋盘内够有3×3的个数为6×6÷(3×3)=4,
因此最多的个数应该是4×2=8个.
解:8个.
证明:设“+”字形的中心为中间的那个方格,
显然所有的中心在6×6的方格内,而每个3×3的方格内最多放2个中心,
6×6的棋盘内够有3×3的个数为6×6÷(3×3)=4,
因此最多的个数应该是4×2=8个.
考点梳理
考点
分析
点评
专题
推理与论证.
本题可根据小“+”字形的中心来求,那么小“+”字形的中心应该在6×6的方格中,每3×3的方格中最多可放2个因此“+”字形的最多的个数为8个.
解决问题的关键是读懂题意,找到所求的量的等量关系.
网格型.
找相似题
(2013·台湾)图(①)为雅婷左手拿着3张深灰色与2张浅灰色的牌迭在一起的情形.以下是她每次洗牌的三个步骤:
步骤一:用右手拿出迭在最下面的2张牌,如图(②).
步骤二:将右手拿的2张牌依序交错插入左手拿的3张牌之间,如图(③).
步骤三:用左手拿着颜色顺序已改变的5张牌,如图(④).
若依上述三个步骤洗牌,从图(①)的情形开始洗牌若干次后,其颜色顺序会再次与图(①)相同,则洗牌次数可能为下列何者?( )
(2010·梧州)用:0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只使用一次),然后把所得的数相加,它们的和不可能是( )
(2010·鞍山)某快餐店肉类食品有5种,蔬菜类食品有8种,饮料类有3种,花15元可以任选其一肉类,一饮料类和二蔬菜类,那么有几种选择( )
(2009·防城港)如图,点A
1
,A
2
,A
3
,A
4
是某市正方形道路网的部分交汇点,且它们都位于同一对角线上.某人从点A
1
出发,规定向右或向下行走,那么到达点A
3
的走法共有( )
(2009·常德)甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )