试题

题目:
青果学院如图.用长为18cm的篱笆(虚线部分),两面靠墙围成矩形的苗圃,设矩形的一边长为x(m),面y(m2),当x=
9
9
时,所围苗圃面积最大.
答案
9

解:设苗圃的一边长为xm,则矩形的另一边长为(18-x)m,
则y=x(18-x)=-x2+18x
∵y=-x2+18x=-(x-9)2+81
∴当x=9时,苗圃的面积最大,最大面积是81m2
故答案为:9.
考点梳理
二次函数的最值.
篱笆只有两边,且其和为18,设一边为x,则另一边为(18-x),根据公式表示面积,根据函数性质求最值,可用公式法或配方法.
此题主要考查了二次函数的应用,运用函数性质求最值解决实际问题时常需考虑自变量的取值范围;二次函数求最值常用配方法和公式法.
找相似题