试题
题目:
(2013·泰州一模)一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm
2
)最大,试问x应取的值为
15
15
cm.
答案
15
解:设包装盒的高为h(cm),底面边长为a(cm),则a=
2
x,h=
2
(30-x),0<x<30.
S=4ah=8x(30-x)=-8(x-15)
2
+1800,
∴当x=15cm时,S取最大值.
故答案为:15.
考点梳理
考点
分析
点评
专题
二次函数的最值;等腰直角三角形;正方形的性质.
可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;
考查函二次函数的最值、等腰直角三角形及正方形的性质,同时还考查了考查运算求解能力、空间想象能力、数学建模能力.属于基础题.
压轴题.
找相似题
(2013·镇江)二次函数y=x
2
-4x+5的最小值是( )
(2013·乌鲁木齐)已知m,n,k为非负实数,且m-k+1=2k+n=1,则代数式2k
2
-8k+6的最小值为( )
(2012·贵阳)已知二次函数y=ax
2
+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )
(2010·自贡)y=x
2
+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )
(2010·金华)已知抛物线y=ax
2
+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有( )