试题
题目:
(2013·桐乡市一模)如图,已知抛物线y=ax
2
+bx+c(a>0)的顶点坐标为(2,-3),将此抛物线在x轴下方的部分沿x轴往上翻折,得到一个新的函数图象(即图中的实线型图象).若|ax
2
+bx+c|=k(k≠0)时,对应的x的值是两个不相等的实数,则常数k的取值范围是
k>3
k>3
.
答案
k>3
解:由图象可知:将此抛物线在x轴下方的部分沿x轴往上翻折,得到一个新的函数图象的顶点坐标为(2,3),
∵|ax
2
+bx+c|=y的图象是x轴上方部分,
∴|ax
2
+bx+c|=k有两个不相等的实数根时,
只有k>3时,作平行于x轴的直线才会与图象有两个交点,
∴k>3.
故答案为:k>3.
考点梳理
考点
分析
点评
二次函数图象与几何变换.
首先得出新的函数图象的顶点坐标,再结合图象即可得出k的取值范围.
本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b
2
-4ac>0时,二次函数y=ax
2
+bx+c的图象与x轴有两个交点.
找相似题
(2013·衢州)抛物线y=x
2
+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)
2
-4,则b、c的值为( )
(2013·聊城)如图,在平面直角坐标系中,抛物线y=
1
2
x
2
经过平移得到抛物线y=
1
2
x
2
-2x
,其对称轴与两段抛物线所围成的阴影部分的面积为( )
(2013·哈尔滨)把抛物线y=(x+1)
2
向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )
(2013·恩施州)把抛物线
y=
1
2
x
2
-1
先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )
(2013·毕节地区)将二次函数y=x
2
的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )