试题

题目:
将抛物线y=x2+2x-3向左平移4个单位,再向下平移3个单位,所得抛物线的函数表达式为
y=x2+10x+18
y=x2+10x+18

答案
y=x2+10x+18

解:抛物线y=x2+2x-3=(x+1)2-4,顶点坐标(-1,-4)向左平移4个单位,再向下平移3个单位得到的点是(-5,-7).可设新函数的解析式为y=(x-h)2+k,代入顶点坐标得y=(x+5)2-7,整理解析式为:y=x2+10x+18.
考点梳理
二次函数图象与几何变换.
先将抛物线y=x2+2x-3化为顶点式,找出顶点坐标,利用平移的特点即可求出新的抛物线.
解决本题的关键是得到所求抛物线顶点坐标,利用平移的规律解答.
找相似题