试题
题目:
(2012·陕西)在平面直角坐标系中,将抛物线y=x
2
-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )
A.1
B.2
C.3
D.6
答案
B
解:当x=0时,y=-6,故函数图象与y轴交于点C(0,-6),
当y=0时,x
2
-x-6=0,即(x+2)(x-3)=0,
解得x=-2或x=3,
即A(-2,0),B(3,0);
由图可知,函数图象至少向右平移2个单位恰好过原点,
故|m|的最小值为2.
故选B.
考点梳理
考点
分析
点评
专题
二次函数图象与几何变换.
计算出函数与x轴、y轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向.
本题考查了二次函数与几何变换,画出函数图象是解题的关键.
压轴题;探究型.
找相似题
(2013·衢州)抛物线y=x
2
+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x-1)
2
-4,则b、c的值为( )
(2013·聊城)如图,在平面直角坐标系中,抛物线y=
1
2
x
2
经过平移得到抛物线y=
1
2
x
2
-2x
,其对称轴与两段抛物线所围成的阴影部分的面积为( )
(2013·哈尔滨)把抛物线y=(x+1)
2
向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )
(2013·恩施州)把抛物线
y=
1
2
x
2
-1
先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )
(2013·毕节地区)将二次函数y=x
2
的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为( )