题目:
(2007·中山区一模)甲乙两人掷一对骰子,若甲掷出的点数之和为6,则加一分,否则不得分;乙掷出的点数之和为7,则加一分,否则不得分;甲、乙各掷骰子10次,得分高者胜.
(1)请用列表法求出甲获胜的概率;
(2)这个游戏公平吗?若公平,说明理由;如果不公平,请你修改规则,使之公平.
答案
解:(1)每次游戏时,所有可能出现的结果如下:
骰子A 骰子B |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
共36种结果,每种结果出现的可能性相同.
①两骰子上点数和为6的结果有5种:(1,5)、(2,4)、(3,3)、(4,2)、(5,1),
因此甲每次得分概率为
.
②两骰子上点数和为7的结果有6种:(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),
因此乙每次得分概率为
=
.
∴
>
,且两人都掷10次,
∴乙获胜概率大.
(2)这个游戏不公平,因为两人获胜的概率不同,可将规则改为无论谁,只要投出的两骰子点数和为6(或7)得1分,每人各投10次,得分多者获胜.
解:(1)每次游戏时,所有可能出现的结果如下:
骰子A 骰子B |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1,1) |
(1,2) |
(1,3) |
(1,4) |
(1,5) |
(1,6) |
2 |
(2,1) |
(2,2) |
(2,3) |
(2,4) |
(2,5) |
(2,6) |
3 |
(3,1) |
(3,2) |
(3,3) |
(3,4) |
(3,5) |
(3,6) |
4 |
(4,1) |
(4,2) |
(4,3) |
(4,4) |
(4,5) |
(4,6) |
5 |
(5,1) |
(5,2) |
(5,3) |
(5,4) |
(5,5) |
(5,6) |
6 |
(6,1) |
(6,2) |
(6,3) |
(6,4) |
(6,5) |
(6,6) |
共36种结果,每种结果出现的可能性相同.
①两骰子上点数和为6的结果有5种:(1,5)、(2,4)、(3,3)、(4,2)、(5,1),
因此甲每次得分概率为
.
②两骰子上点数和为7的结果有6种:(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),
因此乙每次得分概率为
=
.
∴
>
,且两人都掷10次,
∴乙获胜概率大.
(2)这个游戏不公平,因为两人获胜的概率不同,可将规则改为无论谁,只要投出的两骰子点数和为6(或7)得1分,每人各投10次,得分多者获胜.