试题
题目:
(2013·贵阳)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.
(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?
(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是
1
3
”,她的这种看法是否正确?说明理由.
答案
解:(1)根据题意画树状图如下:
数字相同的情况有2种,
则P
(小红获胜)
=P
(数字相同)
=
1
2
,
P
(小明获胜)
=P
(数字不同)
=
1
2
,
则这个游戏公平;
(2)不正确,理由如下;
因为“和为4”的情况只出现了1次,
所以和为4的概率为
1
4
,
所以她的这种看法不正确.
解:(1)根据题意画树状图如下:
数字相同的情况有2种,
则P
(小红获胜)
=P
(数字相同)
=
1
2
,
P
(小明获胜)
=P
(数字不同)
=
1
2
,
则这个游戏公平;
(2)不正确,理由如下;
因为“和为4”的情况只出现了1次,
所以和为4的概率为
1
4
,
所以她的这种看法不正确.
考点梳理
考点
分析
点评
游戏公平性;列表法与树状图法.
(1)根据题意画树状图,再根据概率公式求出概率,即可得出答案;
(2)根据概率公式求出和为4的概率,即可得出答案.
此题考查了游戏的公平性,关键是根据题意画出树状图,求出每件事情发生的概率,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
找相似题
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就得胜.在这个游戏中,若采取合理的策略,你认为( )
下列哪些事件是必然事件的个数有( )
(1)哈尔滨冬天会下雪
(2)中秋节(农历十月十五日)的晚上一定能看到月亮
(3)秋天的树叶一定是黄色的
(4)抛十次硬币五次正面,五次反面.
口袋里有相同的2个红球、4个白球和6个黑球,从口袋里摸出2个球,若两个都是红色,则甲胜;若两个都是黑球,则乙胜.谁获胜的概率大( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )