试题
题目:
边长为2的正六边形的半径为
2
2
,中心角为
60°
60°
,面积为
6
3
6
3
.
答案
2
60°
6
3
解:如图所示:
∵六边形ABCDE是正六边形,
∴∠AOB=
360°
6
=60°;
∵OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2;
作OM⊥AB于点M,
∵OA=2,∠OAB=60°,
∴OM=OA·sin60°=2×
3
2
=
3
,
∴S
正六边形
=6S
△AOB
=6×
1
2
AB×OM=3×2×
3
=6
3
.
故答案为:2;60°;6
3
.
考点梳理
考点
分析
点评
专题
正多边形和圆.
根据题意画出图形,求出∠AOB的度数,判断出△AOB的形状即可得出正六边形的半径,再作OM⊥AB于点M,利用锐角三角函数的定义求出OM的长,得出△AOB的面积,进而可得出结论.
本题考查的是正多边形和圆,根据题意画出图形,作出辅助线,再根据等边三角形的性质及三角形的面积公式求解是解答此题的关键.
探究型.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
(2013·绵阳)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为( )
(2010·台湾)如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积为何( )
(2010·长沙)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )
(2009·肇庆)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )