试题

题目:
设A0,A1,…,An-1依次是面积为整数的正n边形的n个顶点,考虑由连续的若干个顶点连成的凸多边形的面积之和是231,那么n的最大值是
23
23
,此时正n边形的面积是
1
1

答案
23

1

解:用找规律找出P与n的关系式
不难发现,P与n有下表所列的关系
n 3 4 5 6
P 1
(0+1)=(3-3)×3÷2+1
3
(2+1)=(4-3)×4÷2+1
6
(5+1)=(5-3)×5÷2+1
10
(6+3+1)=(6-3)×6÷2+1
因此,P=(n-3)·n÷2+1,即P=
1
2
n2-
3
2
n+1.
P=
1
2
n2-
3
2
n+1可以化为P=
1
2
(n-
3
2
2+
1
8

由于n≥3,故P值越大,n取值越大.
在凸多边形面积之和为231时,由于正n边形的面积为整数,
故其面积取最小值1时,P值最大
代入各值,得:231÷1=
1
2
n2-
3
2
n+1,
整理得:n2-3n-460=0
解得n=23或n=-20(不合题意,舍去)
故n=23为最大值,此时正23边形的面积为1.
故答案为:23,1.
考点梳理
正多边形和圆.
先通过找规律找出P与n的关系式P=
1
2
n2-
3
2
n+1,再化为P=
1
2
(n-
3
2
2+
1
8
,由于n≥3,故P值越大,n取值越大. 在凸多边形面积之和为231时,由于正n边形的面积为整数,故其面积取最小值1时,P值最大,从而得出关于n的方程求解即可.
本题考查了正多边形和圆以及面积及等积变换.解题的关键是得出P与n的关系式,确定面积取最小值1时,P值最大.
找相似题