题目:

(2010·拱墅区一模)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+
∠A;②EF不可能是△ABC的中位线;③设OD=m,AE+AF=n,则S
△AEF=mn;④以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切.其中正确结论的个数是( )
答案
B
解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∵∠ABC+∠ACB=180°-∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-
(∠ABC+∠ACB)=90°+
∠A;故①正确;
若△ABC是等边三角形,则三线合一,此时EF是△ABC的中位线;故②错误;

连接AO,过点O作OH⊥AB于H,
∴AO是△ABC的角平分线,
∵OD⊥AC,
∴OH=OD=m,
∴S
△AEF=S
△AOE+S
△AOF=
AE·OH+
AF·OD=
OD·(AE+AF)=
mn;故③错误;
④∵EF∥BC,
∴∠OBC=∠BOE,∠FOC=∠OCB,
∵∠EBO=∠OBC,∠FCO=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=EO,CF=FO,
∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切.故④正确.
故选B.