试题
题目:
两个半径不相等的圆的圆心都在x轴上,这两个圆的一个公共点的坐标为(-3,0),则这两个圆的公切线共( )
A.1条
B.2条
C.3条
D.1条或3条
答案
D
解:∵两个半径不相等的圆的圆心都在x轴上,这两个圆的一个公共点的坐标为(-3,0),
∴这两个圆是外切或内切,则这两个圆的公切线共有1条或3条.
故选D.
考点梳理
考点
分析
点评
圆与圆的位置关系;坐标与图形性质.
因为两圆只有一个公共点,所以这两个圆是外切或内切,则这两个圆的公切线共有1条或3条.
主要考查了圆与圆之间的位置关系和有关公切线的知识.数量关系:外离:d>R+r,四条公切线;外切:d=R+r,三条公切线;相交:R-r<d<R+r,两条公切线;内切:d=R-r,一条公切线;内含:d<R-r,当d=0时,两圆同心.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·西宁)两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为( )
(2013·钦州)已知⊙O
1
与⊙O
2
的半径分别为2cm和3cm,若O
1
O
2
=5cm.则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2012·营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )