试题
题目:
如图,⊙A、⊙B的半径分别为4、2,且AB=12,若做一⊙C使得三圆的圆心在同一直线上,且⊙C与⊙A外切,⊙C与⊙B相交于两点,则⊙C的半径可能是( )
A.3
B.4
C.5
D.6
答案
B
解:当圆C和两圆都外切时,
根据题意我们可知圆C的半径r=3,
当圆C和圆A外切和圆B相内切时,
圆C的半径r=5,
故圆C与圆A外切,圆C与圆B相交于两点,
圆C的半径取值范围为3<r<5,
故选B.
考点梳理
考点
分析
点评
圆与圆的位置关系.
首先找到一个圆和圆A和圆B都外切,求出该圆的半径,然后再找到圆C和圆A外切和圆B相内切时,圆C半径的取值.
本题主要考查圆与圆的位置关系的知识点,解答本题的关键是根据圆心距和两圆半径之间的关系进行着手解答,本题比较简单.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·西宁)两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为( )
(2013·钦州)已知⊙O
1
与⊙O
2
的半径分别为2cm和3cm,若O
1
O
2
=5cm.则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2012·营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )