试题

题目:
已知⊙A和⊙B的半径分别是一元二次方程x2-2x+
8
9
=0的两根,且AB=1,则两圆的位置关系是
相交
相交

答案
相交

解:∵x2-2x+
8
9
=0,
∴(3x-2)(3x-4)=0,
解得:x=
2
3
或x=
4
3

∴两个圆的半径分别为
2
3
4
3

2
3
+
4
3
=2,
4
3
-
2
3
=
2
3

又∵两圆的圆心距是1,
∴这两个圆的位置关系是相交.
故答案为相交.
考点梳理
圆与圆的位置关系;根与系数的关系.
首先解方程x2-2x+
8
9
=0,求得两个圆的半径,然后由两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.
此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解题的关键.
计算题.
找相似题