试题
题目:
两圆相切,圆心距为5,其中一个圆的半径为4,则另一个圆的半径为
1或9
1或9
.
答案
1或9
解:当两圆外切时,
则圆心距等于两圆半径之和,此时另一个圆的半径是5-4=1;
当两圆内切时,
圆心距等于两圆半径之差,则另一个圆的半径是5+4=9.
故答案为:1或9.
考点梳理
考点
分析
点评
圆与圆的位置关系.
两圆相切,有两种可能:外切,内切;根据外切和内切时,两圆半径与圆心距的数量关系,分别求解.
本题考查两圆的位置关系.特别注意:两圆相切,则可能有两种情况,内切或外切.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·西宁)两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为( )
(2013·钦州)已知⊙O
1
与⊙O
2
的半径分别为2cm和3cm,若O
1
O
2
=5cm.则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2012·营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )