试题
题目:
如图,在平面直角坐标中,以(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,
(1)将⊙A向左平移
3
3
个单位长度与y轴首次相切得到⊙A′,此时点A′的坐标为
(2,1)
(2,1)
,阴影部分的面积S=
6
6
;
(2)BC=
2
3
2
3
.
答案
3
(2,1)
6
2
3
解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);
则移动的距离是5-2=3;
根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;
(2)如图,连接AC,过点A作AD⊥BC于点D,
则BC=2DC.
由A(5,1)可得AD=1.
又∵半径AC=2,
∴在Rt△ADC中,
DC=
A
C
2
-A
D
2
=
2
2
-
1
2
=
3
,
∴BC=2
3
.
故答案为3,(2,1),6;2
3
.
考点梳理
考点
分析
点评
圆与圆的位置关系;坐标与图形性质.
(1)根据直线和圆相切,则圆心到直线的距离等于圆的半径,知点A′的坐标是(2,1),从而求得移动的距离;阴影部分的面积即为底3、高2的平行四边形的面积;
(2)连接AC,过点A作AD⊥BC于点D.根据垂径定理和勾股定理进行计算.
本题考查了直线与圆的位置关系,坐标与图形性质,平移变换、垂径定理和勾股定理,难度适中.
找相似题
(2013·孝感)下列说法正确的是( )
(2013·西宁)两个半径不等的圆相切,圆心距为6cm,且大圆半径是小圆半径的2倍,那么小圆的半径为( )
(2013·钦州)已知⊙O
1
与⊙O
2
的半径分别为2cm和3cm,若O
1
O
2
=5cm.则⊙O
1
与⊙O
2
的位置关系是( )
(2013·宁德)如图所示的两圆位置关系是( )
(2012·营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为( )