试题

题目:
青果学院如图,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=
1
3
S1=
1
3
S2,求S.
答案
解:由题设可得:
5(S-1)=4S-S1-S2S3
S1=S2=3S3

∴S3=
5-S
7
.①
又2S-
1
2
S1-S2-
1
2
S3=8,
即:2S-5S3=8  ②
把①代入②消去S3得:S=
81
19

解:由题设可得:
5(S-1)=4S-S1-S2S3
S1=S2=3S3

∴S3=
5-S
7
.①
又2S-
1
2
S1-S2-
1
2
S3=8,
即:2S-5S3=8  ②
把①代入②消去S3得:S=
81
19
考点梳理
圆与圆的位置关系;解二元一次方程组.
观察图形可以得到四个圆之间的位置关系,根据重叠部分的面积可以列出一个方程,然后与题目中S1,S2,S3的关系联立方程组,解方程组得到S的值.
本题考查的是圆与圆的位置关系,根据题意结合图形列方程组,用代入消元法解方程组求出S的值.
数形结合.
找相似题