试题
题目:
如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,
求证:△ABC的外心O与点A、P、Q四点共圆.
答案
证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,
∵O是△ABC的外心,
∴OE=OF,OB=OA,
由勾股定理得:BE
2
=OB
2
-OE
2
,AF
2
=OA
2
-OF
2
,
∴BE=AF,
∵AP=BQ,
∴PF=QE,
∵OE⊥AB,OF⊥AC
∴∠OFP=∠OEQ=90°,
∴Rt△OPF≌Rt△OQE,
∴∠P=∠Q,
∴O、A、P、Q四点共圆.
即:△ABC的外心O与点A、P、Q四点共圆.
证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,
∵O是△ABC的外心,
∴OE=OF,OB=OA,
由勾股定理得:BE
2
=OB
2
-OE
2
,AF
2
=OA
2
-OF
2
,
∴BE=AF,
∵AP=BQ,
∴PF=QE,
∵OE⊥AB,OF⊥AC
∴∠OFP=∠OEQ=90°,
∴Rt△OPF≌Rt△OQE,
∴∠P=∠Q,
∴O、A、P、Q四点共圆.
即:△ABC的外心O与点A、P、Q四点共圆.
考点梳理
考点
分析
点评
专题
四点共圆;全等三角形的判定与性质;勾股定理;确定圆的条件.
先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.
本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证
∠P=∠Q是解此题的关键.
证明题.
找相似题
(2010·河北)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )
(2008·湘西州)下列说法中正确的个数有( )
①直径不是弦;
②三点确定一个圆;
③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;
④相等的圆心角所对的弧相等,所对的弦也相等.
(2007·上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
下列关于确定一个圆的说法中,正确的是( )
在同一平面内,过已知A、B、C三个点可以作圆的个数为( )