答案
证明:延长AM到点E,使得:ME=MD,连接CE.

∵CM是DE的垂直平分线,
∴CD=CE,
∵AB=AD,
∴∠E=∠CDE=∠ADB=∠B,
∵∠ACE=180°-∠CAE-∠E=180°-∠BAD-∠ADB=∠B=∠E,
∴AC=AE,
AM=
(AM+AM)
=
(AM-MD+ME+AM)
=
(AD+AE)
=
(AB+AC),
即AM=
(AB+AC).
证明:延长AM到点E,使得:ME=MD,连接CE.

∵CM是DE的垂直平分线,
∴CD=CE,
∵AB=AD,
∴∠E=∠CDE=∠ADB=∠B,
∵∠ACE=180°-∠CAE-∠E=180°-∠BAD-∠ADB=∠B=∠E,
∴AC=AE,
AM=
(AM+AM)
=
(AM-MD+ME+AM)
=
(AD+AE)
=
(AB+AC),
即AM=
(AB+AC).