试题

题目:
有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③平分弦的直径垂直弦;④相等的圆周角所对的弧相等.其中正确的有
(填序号).
答案

解:∵①直径是弦,正确;
②经过不在同一直线上的三个点一定可以作圆,故错误;
③平分非直径的弦的直径垂直弦,故错误;
④在同圆或等圆中,相等的圆周角所对的弧相等,故错误.
∴正确的有①.
故答案为:①.
考点梳理
圆周角定理;圆的认识;垂径定理;确定圆的条件.
根据弦的定义、确定圆的条件、垂径定理以及圆周角定理求解,即可求得答案.
此题考查了弦的定义、确定圆的条件、垂径定理以及圆周角定理.此题难度不大,注意熟记定理是解此题的关键.
找相似题