试题
题目:
(2011·台湾)若一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的两根为0、2,则|3a+4b|的值为( )
A.2
B.5
C.7
D.8
答案
B
解:将2代入ax(x+1)+(x+1)(x+2)+bx(x+2)=2中计算得3a+4b=-5,所以|3a+4b|=5.
故选B.
考点梳理
考点
分析
点评
解二元一次方程组;绝对值;根与系数的关系.
先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a、b的关系式.然后根据a、b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.
此题考查了一元二次方程和二元一次方程及绝对值的运用.
找相似题
(2013·湘潭)一元二次方程x
2
+x-2=0的解为x
1
、x
2
,则x
1
·x
2
=( )
(2013·湖北)已知α,β是一元二次方程x
2
-5x-2=0的两个实数根,则α
2
+αβ+β
2
的值为( )
(2013·包头)已知方程x
2
-2x-1=0,则此方程( )
(2012·烟台)下列一元二次方程两实数根和为-4的是( )
(2012·天门)如果关于x的一元二次方程x
2
+4x+a=0的两个不相等实数根x
1
,x
2
满足x
1
x
2
-2x
1
-2x
2
-5=0,那么a的值为( )