试题
题目:
已知三个二元一次方程ax
2
+bx+c=0,bx
2
+cx+a=0,cx
2
+ax+b=0有公共根,求证:a+b+c=0.
答案
证明:设这三个方程的一个公共根为t.
把x=t代入ax
2
+bx+c=0,bx
2
+cx+a=0,cx
2
+ax+b=0得:
a·t
2
+bt+c=0,bt
2
+ct+a=0,ct
2
+a·t+b=0,
相加得:(a+b+c)t
2
+(b+c+a)t+(a+b+c)=0,
(a+b+c)(t
2
+t+1)=0,
∵t
2
+t+1≠0,
∴a+b+c=0.
证明:设这三个方程的一个公共根为t.
把x=t代入ax
2
+bx+c=0,bx
2
+cx+a=0,cx
2
+ax+b=0得:
a·t
2
+bt+c=0,bt
2
+ct+a=0,ct
2
+a·t+b=0,
相加得:(a+b+c)t
2
+(b+c+a)t+(a+b+c)=0,
(a+b+c)(t
2
+t+1)=0,
∵t
2
+t+1≠0,
∴a+b+c=0.
考点梳理
考点
分析
点评
专题
一元二次方程的解.
把x=t代入3个方程得出a·t
2
+bt+c=0,bt
2
+ct+a=0,ct
2
+a·t+b=0,3个方程相加即可得出(a+b+c)(t
2
+t+1)=0,即可求出答案.
本题考查了一元二次方程的解,使方程左右两边相等的未知数的值叫方程的解.
证明题.
找相似题
(2012·鄂尔多斯)若a是方程2x
2
-x-3=0的一个解,则6a
2
-3a的值为( )
(2011·张家界)已知1是关于x的一元二次方程(m-1)x
2
+x+1=0的一个根,则m的值是( )
(2011·乌鲁木齐)关于x的一元二次方程(a-1)x
2
+x+|a|-1=0的一个根是0,则实数a的值为( )
(2011·济宁)已知关于x的方程x
2
+bx+a=0的一个根是-a(a≠0),则a-b值为( )
(2010·鞍山)已知x=2是方程
3
2
x
2
-2a=0的一个解,则2a-1的值是( )