试题
题目:
(2013·云南)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
答案
解:(1)∵AB=AC,AD是BC的边上的中线,
∴AD⊥BC,
∴∠ADB=90°,
∵四边形ADBE是平行四边形.
∴平行四边形ADBE是矩形;
(2)∵AB=AC=5,BC=6,AD是BC的中线,
∴BD=DC=6×
1
2
=3,
在直角△ACD中,
AD=
A
C
2
-D
C
2
=
5
2
-
3
2
=4,
∴S
矩形ADBE
=BD·AD=3×4=12.
解:(1)∵AB=AC,AD是BC的边上的中线,
∴AD⊥BC,
∴∠ADB=90°,
∵四边形ADBE是平行四边形.
∴平行四边形ADBE是矩形;
(2)∵AB=AC=5,BC=6,AD是BC的中线,
∴BD=DC=6×
1
2
=3,
在直角△ACD中,
AD=
A
C
2
-D
C
2
=
5
2
-
3
2
=4,
∴S
矩形ADBE
=BD·AD=3×4=12.
考点梳理
考点
分析
点评
矩形的判定与性质;勾股定理;平行四边形的性质.
(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;
(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.
本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.
找相似题
(2011·江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A
1
B
1
C
1
D
1
,再顺次连接四边形A
1
B
1
C
1
D
1
各边中点,得到四边形A
2
B
2
C
2
D
2
…,如此进行下去,得到四边形A
n
B
n
C
n
D
n
.下列结论
正确的有( )
①四边形A
2
B
2
C
2
D
2
是矩形;
②四边形A
4
B
4
C
4
D
4
是菱形;
③四边形A
5
B
5
C
5
D
5
的周长是
a+b
4
④四边形A
n
B
n
C
n
D
n
的面积是
ab
2
n+1
.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )
(2013·河北区二模)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )
下列说法中,错误的是( )
取四边形ABCD的各边中点E、F、G、H,依次连接EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )