试题
题目:
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )
A.2
B.2.2
C.2.4
D.2.5
答案
C
解:∵在△ABC中,AB=3,AC=4,BC=5,
∴AB
2
+AC
2
=BC
2
,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
∴EF的最小值为2.4,
故选C.
考点梳理
考点
分析
点评
专题
矩形的判定与性质;垂线段最短;勾股定理的逆定理.
根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
压轴题.
找相似题
(2011·江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A
1
B
1
C
1
D
1
,再顺次连接四边形A
1
B
1
C
1
D
1
各边中点,得到四边形A
2
B
2
C
2
D
2
…,如此进行下去,得到四边形A
n
B
n
C
n
D
n
.下列结论
正确的有( )
①四边形A
2
B
2
C
2
D
2
是矩形;
②四边形A
4
B
4
C
4
D
4
是菱形;
③四边形A
5
B
5
C
5
D
5
的周长是
a+b
4
④四边形A
n
B
n
C
n
D
n
的面积是
ab
2
n+1
.
(2013·河北区二模)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )
下列说法中,错误的是( )
取四边形ABCD的各边中点E、F、G、H,依次连接EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )
下列各组条件中,能判定四边形ABCD为矩形的是( )