试题
题目:
(2012·塘沽区二模)如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是
18
18
.
答案
18
解:∵AE∥BD,
∴∠CDB=∠DAE,
∵∠ACB=90°,DE⊥AC,
∴∠C=∠ADE=90°,
∴DE∥BC,
∵D为AC中点,
∴AD=CD,
在△ADE和△DCB中
∵
∠ADE=∠C
AD=CD
∠DAE=∠CDB
,
∴△ADE≌△DCB(ASA),
∴DE=BC=4,
在Rt△DCB中,BC=4,BD=5,由勾股定理得:DC=3,
∴AD=DC=3,
∵ED=BC,DE∥BC,
∴四边形DEBC是平行四边形,
∴CD=BE=3,
∴四边形ACBE的周长是AC+BC+BE+AE=3+3+4+3+5=18,
故答案为:18.
考点梳理
考点
分析
点评
矩形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定与性质.
求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.
本题考查了矩形的性质,平行四边形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点,关键是求出各个边的长度,本题综合性比较强,有一定的难度.
找相似题
(2011·江津区)如图,四边形ABCD中,AC=a,BD=b,且AC丄BD,顺次连接四边形ABCD 各边中点,得到四边形A
1
B
1
C
1
D
1
,再顺次连接四边形A
1
B
1
C
1
D
1
各边中点,得到四边形A
2
B
2
C
2
D
2
…,如此进行下去,得到四边形A
n
B
n
C
n
D
n
.下列结论
正确的有( )
①四边形A
2
B
2
C
2
D
2
是矩形;
②四边形A
4
B
4
C
4
D
4
是菱形;
③四边形A
5
B
5
C
5
D
5
的周长是
a+b
4
④四边形A
n
B
n
C
n
D
n
的面积是
ab
2
n+1
.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )
(2013·河北区二模)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )
下列说法中,错误的是( )
取四边形ABCD的各边中点E、F、G、H,依次连接EFGH得到四边形EFGH,现知四边形EFGH是菱形,则四边形ABCD的对角线( )