试题
题目:
如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.
(1)求证:△BOC≌△EOD;
(2)当∠A=
1
2
∠EOC时,连接BD、CE,求证:四边形BCED为矩形.
答案
证明:(1)∵在平行四边形ABCD中,
AD=BC,AD∥BC,
∴∠EDO=∠BCO,∠DEO=∠CBO,
∵DE=AD,
∴DE=BC,
在△BOC和△EOD中
∵
∠OBC=∠OED
BC=DE
∠OCB=∠ODE
,
∴△BOC≌△EOD(ASA);
(2)∵DE=BC,DE∥BC,
∴四边形BCED是平行四边形,
在平行四边形ABCD中,AB∥DC,
∴∠A=∠ODE,
∵∠A=
1
2
∠EOC,
∴∠ODE=
1
2
∠EOC,
∵∠ODE+∠OED=∠EOC,
∴∠ODE=∠OED,
∴OE=OD,
∵平行四边形BCED中,CD=2OD,BE=2OE,
∴CD=BE,
∴平行四边形BCED为矩形.
证明:(1)∵在平行四边形ABCD中,
AD=BC,AD∥BC,
∴∠EDO=∠BCO,∠DEO=∠CBO,
∵DE=AD,
∴DE=BC,
在△BOC和△EOD中
∵
∠OBC=∠OED
BC=DE
∠OCB=∠ODE
,
∴△BOC≌△EOD(ASA);
(2)∵DE=BC,DE∥BC,
∴四边形BCED是平行四边形,
在平行四边形ABCD中,AB∥DC,
∴∠A=∠ODE,
∵∠A=
1
2
∠EOC,
∴∠ODE=
1
2
∠EOC,
∵∠ODE+∠OED=∠EOC,
∴∠ODE=∠OED,
∴OE=OD,
∵平行四边形BCED中,CD=2OD,BE=2OE,
∴CD=BE,
∴平行四边形BCED为矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;全等三角形的判定与性质;平行四边形的性质.
(1)根据平行四边形性质得出AD=BC,AD∥BC,推出∠EDO=∠BCO,∠DEO=∠CBO,求出DE=BC,根据ASA推出两三角形全等即可;
(2)求出∠EDO=∠A=
1
2
∠EOC,推出∠ODE=∠OED,推出OD=OE,得出平行四边形BCED,推出CD=BE,根据矩形的判定推出即可.
本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用.
证明题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )