试题
题目:
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
A.菱形
B.正方形
C.矩形
D.等腰梯形
答案
C
解:是矩形.
证明:如图,∵四边形ABCD是菱形,
∴AC⊥BD,
∵E,F,G,H是中点,
∴EF∥BD,FG∥AC,
∴EF⊥FG,
同理:FG⊥HG,GH⊥EH,HE⊥EF,
∴四边形EFGH是矩形.
故选C.
考点梳理
考点
分析
点评
矩形的判定;三角形中位线定理;菱形的判定与性质.
菱形的对角线互相垂直,连接个边中点可得到四边形的特征.
本题考查菱形的性质与判定定理,矩形的判定定理以及三角形的中位线定理.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )
(2008·宁夏)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )