矩形的判定;三角形中位线定理;菱形的性质.
先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用
EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.
本题考查了三角形中位线定理、平行四边形的判定、矩形的判定、平行线的性质、菱形的性质.解题的关键是证明四边形EFGH是平行四边形以及∠HEF=∠BME=90°.