试题
题目:
如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE.判断四边形ADCF的形状,并说明理由.
答案
解:四边形ADCF矩形;
理由:∵△ADE绕点E旋转180°得△CFE,
∴AE=CE,DE=EF.
∴四边形ADCF是平行四边形.
∵AC=BC,点D是边AB的中点,
∴CD⊥AB,
∴∠ADC=90°.
∴四边形ADCF矩形.
解:四边形ADCF矩形;
理由:∵△ADE绕点E旋转180°得△CFE,
∴AE=CE,DE=EF.
∴四边形ADCF是平行四边形.
∵AC=BC,点D是边AB的中点,
∴CD⊥AB,
∴∠ADC=90°.
∴四边形ADCF矩形.
考点梳理
考点
分析
点评
矩形的判定.
首先根据旋转的性质得出AE=CE,DE=EF,即可得出四边形ADCF是平行四边形,再利用等腰三角形的性质得出∠ADC=90°,即可得出答案.
此题主要考查了矩形的判定以及平行四边形的判定,熟练掌握它们的区别与联系是解题关键.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )