试题
题目:
如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.
答案
证明:∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
又∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
∴平行四边形OBEC是矩形.
证明:∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
又∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOB=90°,
∴平行四边形OBEC是矩形.
考点梳理
考点
分析
点评
矩形的判定;菱形的性质.
根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.
本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )