题目:

(2013·仓山区模拟)(1)如图,在△ABC中,∠C=90°,BC>AC,点D、E、F分别是△ABC三边的中点,求证:四边形DCEF是矩形.
(2)有一个两位数,它的十位上的数字与个位上的数字之和为10,差为6,求这个两位数.
答案
(1)证明:∵点D、E、F分别是△ABC三边的中点,
∴DF∥AC,EF∥DC,
∵∠C=90°,
∴∠CEF=90°,∠CDF=90°,
∴四边形DCEF是矩形.
(2)解:设个位上的数字x,则十位数字是x+6,由题意可得:
x+x+6=10,
2x=4,
解得:x=2;
十位数字是:x+6=2+6=8,
则这个两位数是82.
(1)证明:∵点D、E、F分别是△ABC三边的中点,
∴DF∥AC,EF∥DC,
∵∠C=90°,
∴∠CEF=90°,∠CDF=90°,
∴四边形DCEF是矩形.
(2)解:设个位上的数字x,则十位数字是x+6,由题意可得:
x+x+6=10,
2x=4,
解得:x=2;
十位数字是:x+6=2+6=8,
则这个两位数是82.