试题
题目:
(2013·龙湾区一模)如图,Rt△ABE与Rt△DCF关于直线m对称,若∠B=90°,∠C=90°,连结EF,AD,点B,E,F,C在同一条直线上.求证:四边形ABCD是矩形.
答案
证明:∵Rt△ABE与Rt△DCF关于直线m对称,
∴AB=CD,
∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,
∴AB∥CD,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
证明:∵Rt△ABE与Rt△DCF关于直线m对称,
∴AB=CD,
∵∠B=90°,∠C=90°,点B,E,F,C在同一条直线上,
∴AB∥CD,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;轴对称的性质.
根据轴对称的性质得出AB=CD,进而得出AB∥CD,再利用矩形的判定得出四边形ABCD是矩形.
此题主要考查了平行四边形的判定以及矩形的判定和轴对称的性质等知识,根据已知得出四边形ABCD是平行四边形是解题关键.
证明题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )