试题
题目:
(2011·莆田)如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连
接BF.
(1)求证:DB=CF;
(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.
答案
(1)证明:∵CF∥AB,
∴∠DAE=∠CFE,
∵DE=CE,∠AED=∠FEC,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵AD=DB,
∴DB=CF;
(2)四边形BDCF是矩形,
证明:∵DB=CF,DB∥CF,
∴四边形BDCF为平行四边形,
∵AC=BC,AD=DB,
∴CD⊥AB,
∴四边形BDCF是矩形.
(1)证明:∵CF∥AB,
∴∠DAE=∠CFE,
∵DE=CE,∠AED=∠FEC,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵AD=DB,
∴DB=CF;
(2)四边形BDCF是矩形,
证明:∵DB=CF,DB∥CF,
∴四边形BDCF为平行四边形,
∵AC=BC,AD=DB,
∴CD⊥AB,
∴四边形BDCF是矩形.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;矩形的判定.
(1)根据CF∥AB,可知∠DAE=∠CFE,得出△ADE≌△FCE,再根据等量代换可知DB=CF,
(2)根据DB=CF,DB∥CF,可知四边形BDCF为平行四边形,再根据AC=BC,AD=DB,得出四边形BDCF是矩形.
本题主要考查了全等三角形的判定及性质,以及矩形的判定,难度适中.
证明题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )