试题
题目:
如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加
AC⊥BD
AC⊥BD
条件,才能保证四边形EFGH是矩形.
答案
AC⊥BD
解:∵G、H、E分别是BC、CD、AD的中点,
∴HG∥BD,EH∥AC,
∴∠EHG=∠1,∠1=∠2,
∴∠2=∠EHG,
∵四边形EFGH是矩形,
∴∠EHG=90°,
∴∠2=90°,
∴AC⊥BD.
故还要添加AC⊥BD,才能保证四边形EFGH是矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;三角形中位线定理.
根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.
本题主要考查三角形的中位线定理和矩形的四个角都是直角的性质,熟练掌握定理和性质是解题的关键.
开放型.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )